DWARF TILLER1, a WUSCHEL-Related Homeobox Transcription Factor, Is Required for Tiller Growth in Rice
نویسندگان
چکیده
Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that Dwarf Tiller1 (DWT1) controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa). Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a Wuschel-related homeobox (WOX) transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA) treatment, and some of the slender rice1 (slr1) dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice.
منابع مشابه
A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.
YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas r...
متن کاملA gain-of-function Bushy dwarf tiller 1 mutation in rice microRNA gene miR156d caused by insertion of the DNA transposon nDart1
A non-autonomous DNA transposon in rice, nDart1, is actively transposed in the presence of an autonomous element, aDart1, under natural conditions. The nDart1-promoted gene tagging line was developed using the endogenous nDart1/aDart1 system to generate various rice mutants effectively. While the dominant mutants were occasionally isolated from the tagging line, it was unclear what causes domin...
متن کاملThe tonoplast--where sweetness is dispensable.
is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. The ...
متن کاملHomeobox Is Pivotal for OsWUS Controlling Tiller Development and Female Fertility in Rice
OsWUS has recently been shown to be a transcription factor gene critical for tiller development and fertility in rice. The OsWUS protein consists of three conserved structural domains, but their biological functions are still unclear. We discovered a new rice mutant resulting from tissue culture, which hardly produced tillers and exhibited complete female sterility. The male and female floral o...
متن کاملThe WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice.
In rice (Oryza sativa), the shoot-borne crown roots are the major root type and are initiated at lower stem nodes as part of normal plant development. However, the regulatory mechanism of crown root development is poorly understood. In this work, we show that a WUSCHEL-related Homeobox (WOX) gene, WOX11, is involved in the activation of crown root emergence and growth. WOX11 was found to be exp...
متن کامل